ISSUE#4

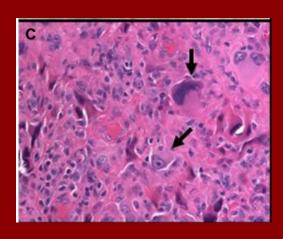
THE TEXAS SOCIETY FOR HISTOTECHNOLOGY

CREEPING INTO FALL: NOTES FROM THE BENCH

Reader's discretion: Halloween is my absolute favorite. I had an absolute blast with this issue, so I hope you enjoy it as much as I did creating it.

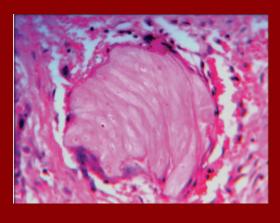
As the air turns crisp and the days grow shorter, we gradually exchange the brightness of summer for the more subdued shadows of autumn. However, inside the lab, things remain busy: the water bath continues to glow, the processors hum away, and the rhythm of our work carries on. October feels like a reflection of what we strive for in histology: preserving, revealing, and transforming. Each tissue holds its own story, just waiting for the right stain to bring it to life.

This season also marks the beginning of conference time, offering an opportunity for many of us to gather, whether online or in person, to share insights, troubleshoot challenges, and reconnect. These moments of collaboration are essential for advancing our field, and your participation helps keep the Texas Society for Histotechnology vibrant and strong.

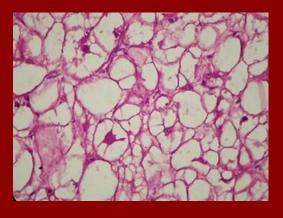

As fall settles in, I want to express my gratitude for the care and dedication you bring to your work. Whether you are just starting out or are a seasoned technician, it is your precision and passion that breathe life into histotechnology. I hope this season brings you not only new insights and growth but also some time to appreciate the beautiful changing colors and quiet moments outside the lab.

With the leaves falling and the nights growing longer, may your ribbons stay smooth, your sections remain unwrinkled, and your stains have perfect contrast.

> In Spooky Solidarity, Toni Lona Newsletter Chair anlona@UTMB.edu



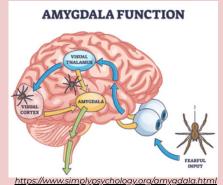
SPOORT GEILLS


Monster Cells

Cells with large hyperchromatic and convoluted nuclei (arrows)¹

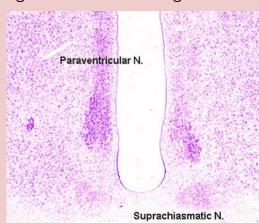
Ghost Cells

Cells with clear conservation of basic cellular outline but lacking nuclear and cytoplasmic details.²



Spider Cells

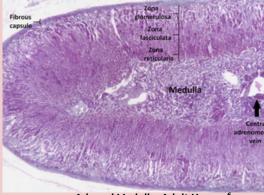
Cardiac rhabdomyomas are composed of large vacuolated cells. This appearance is caused by centrally placed nucleus from which myofibrils radiate to the cell membrane.³


THE ANATOMY OF FEAR

A Histologic Look at Fight-or-Flight

Fear is one of our most basic survival tools. When we sense danger, the body doesn't wait for us to think; it jumps into action. This 'fight-orflight' response links the brain and body in a rapid, coordinated system, with three key players: the amygdala, the hypothalamus, and the adrenal medulla.

The amygdala, an almond-shaped structure deep in the temporal lobe, plays a central role in detecting threats. Once danger is recognized, it signals other brain regions to initiate a response.1


Hypothalamus, NHP ⁵

The adrenal medulla responds almost instantly by releasing adrenaline and some norepinephrine into the bloodstream. At the same time, sympathetic nerves release norepinephrine directly onto tissues. The result is a rapid surge of physiological changes: faster heart rate, higher blood pressure, widened airways, mobilized energy, and dilated pupils; all designed to prepare the body to fight or flee.³

Amygdala, Adult human 4

The hypothalamus then acts as the command hub. It activates the sympathetic nervous system, sending signals to the adrenal glands, while also releasing corticotropin-releasing hormone (CRH) to start a slower stresshormone cascade.²

Adrenal Medulla, Adult Human

In just moments, perception becomes action: the amygdala detects the threat, the hypothalamus coordinates the response, and the adrenal medulla unleashes the physical reaction that keeps us alive.

4 a.m. Frights: When the Run Wasn't Run

"We had an extended holiday weekend approaching, and rather than reprogram the tissue processor's schedule, my supervisor volunteered to come in the night before and start the run so everything would be ready by 4 a.m. the next day. You can probably guess what happened next — she forgot. We arrived to find an empty processor and later had a group of very unhappy pathologists."

Feeling Faint: Six Stitches in the Hallway

"We used to have high school students participate in a job shadow rotation in our histology department, but we've since discontinued the program. During one rotation, a student was observing a pathologist assistant in the gross room when she suddenly excused herself, saying she needed to use the washroom. Moments later, she fainted in the hallway. EMS was called, and she ended up needing six stitches on her chin."

Last Call for Clostridium

It was 3:59 p.m. on a Friday when the phone rang. "Clostridium FA." The lab went silent. Everyone knew the curse: once you started an FA, you're chained to the scope long after the rest of the lab has gone dark. The slides glow an eerie green under UV, spores twinkling like malicious stars in a void. Time bends in the FA room; an hour feels like three.

By 6 p.m., the halls were empty. The soda in the breakroom had gone flat. The processor hummed like a restless ghost. Alone, you peer into the scope, only to see something move that shouldn't.

And just as you think you've finished, the phone rings again.

"Another sample just arrived."

No one ever really leaves after a 4 p.m. Clostridium FA.

Think you've got a more hilarious or terrifying tale from the lab trenches? Share your Histology Horror Story for a chance to be featured in November's issue. The messier, the better, bonus points for haunted microtomes, chaotic computers, or misbehaving equipment!

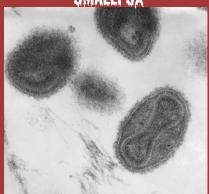
Submit your story to: anlona@utmb.edu Deadline: October 20th

PLAGUES UNDER THE MICROSCOPE

Throughout history, humanity has faced waves of disease so fearsome they seemed almost supernatural. Yet under the microscope, these plagues become less myth and more morphology.

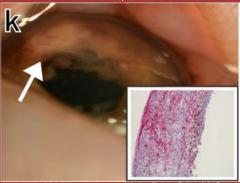
THE BLACK PLAGUE

Wayson Stain of Yersinia pestis 1


The Black Death, carried by Yersinia pestis, once swept across continents, emptying villages and rewriting history. In swollen lymph nodes, it produced hemorrhagic, necrotic lesions packed with bacilli, a chilling histologic reminder of its ferocity.¹

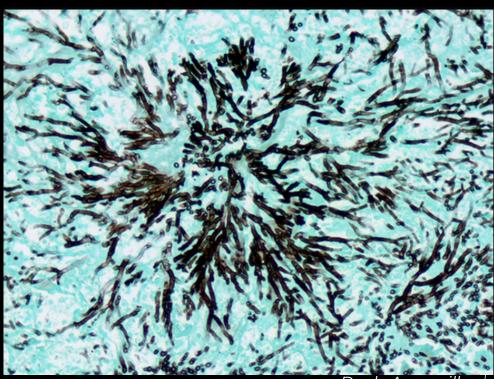
Smallpox, eradicated only within living memory, scarred both skin and societies.

Histologically, its pox lesions reveal ballooning degeneration of keratinocytes and distinctive eosinophilic cytoplasmic inclusions known as Guarnieri bodies; signatures of variola virus replication in the skin, the cellular battlefield of one of humanity's greatest foes.²



TEM of Smallpox Virus virions

EBOLA



NHP, Ebola, Intense ISH labeling of the iris ³

Each pathogen has its own sinister signature. Together, they remind us that history's plagues are more than just stories, they are cellular imprints we continue to study, interpret, and learn from. In this season of shadows, histology helps us glimpse the true "faces" of these invisible monsters.

STAIN OF THE MONTH

Known as one of the most dramatic silver stains in histology, GMS turns fungi into stark black figures lurking against a green background, like something crawling out of the dark.

Duck, Aspergillus

What it Shows

GMS is the go-to stain for fungal organisms. Yeasts, hyphae, and spores all appear black and sharply outlined. Basement membranes also pick up the stain, adding a ghostly framework around the tissue.

How it Works

Carbohydrates in fungal cell walls are oxidized by chromic acid, creating aldehydes that reduce methenamine silver to metallic silver. The result: fungi that stand out like ink drawings in the tissue. A light green counterstain provides a striking contrast, making the organisms practically glow.¹

THE DARK HISTORY OF HISTOLOGY: JOXIC ORIGINS OF COMMON REAGENTS

From coffin-colored dyes to carcinogenic fumes, the most familiar reagents in histology carry a haunted history. Step into the shadows and explore the dark origins of formalin, hematoxylin, and xylene... if you dare.

Natalie Dobias HTL(ASCP)^{cm}QIHC^{cm}

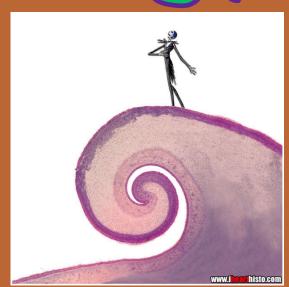
Formalin is the most widely used fixative in histology. Formaldehyde has long been recognized as a strong irritant, and the International Agency for Research on Cancer (IARC) classifies it as a Group 1 carcinogen (known to cause cancer in humans). Concerns about its toxicity were raised as early as the early 20th century, with published reports of respiratory irritation and long-term health effects. Despite improved ventilation and safety protocols, debates continue about its balance of effectiveness in tissue preservation versus the risks it poses to laboratory workers.¹

HEMATOXYLIN

Hematoxylin is extracted from the heartwood of the logwood tree (Haematoxylum campechianum), native to Central America. Its trade dates back to the 16th century, tied to colonial exploitation and forced labor. By the 1830s, hematoxylin had become a pillar in histology as a natural dye. For staining, it must be oxidized to hematein and combined with a mordant, such as alum, iron, or, historically, mercuric oxide (later abandoned due to toxicity). Despite the use of synthetic dyes and new methods, hematoxylin remains indispensable in pathology. As Ortiz-Hidalgo aptly put it, "Hematoxylin is irreplaceable... Mesoamerica's gift to histopathology."²

XYLENE

Xylene was introduced into histology labs in the mid-20th century as a clearing agent, replacing more volatile and flammable solvents like benzene. Although initially promoted as a safer alternative, prolonged exposure was soon linked to neurotoxic effects. Acute symptoms can include headaches, dizziness, and nausea; chronic exposure may contribute to neurological impairment and, in high levels, pulmonary complications. Today, many laboratories use xylene substitutes to reduce risks while maintaining reliable tissue processing.³



Histo-Iol-gy

https://www.texashistology.com

Memes from ihearthisto.com

Are you a passionate histotech with a cool case, clever tip, or compelling story to share? The Texas Society for Histotechnology (TSH) Newsletter wants to hear from YOU!

We're currently accepting submissions for upcoming issues and would love to feature your voice. Whether it's a how-to article on a staining technique, a fun lab anecdote, a photo of your latest beautiful slide, or a comic that only fellow histotechs will understand? There's a place for it in our pages.

You don't need to be a professional writer to contribute. We welcome pieces of all lengths and rones, from technical to humorous, and we're happy to help polish your draft if needed. Student voices and first-time contributors are especially encouraged to submit!

This is YOUR newsletter, let's make it a vibrant, collaborative space that reflects the creativity, expertise, and heart of our Texas histology community.

Submit your ideas, photos, or full articles to anlona@utmb.edu. Deadline for the next issue is October 25th.

Got something in your microtome drawer worth sharing? Don't keep it to yourself, submit it today!

JOIN TSH!

Click the link below to become a member of TSH and connect with a vibrant community of histology professionals across Texas. Whether you're a student, tech, pathologist, or vendor, there's a place for you in TSH! Gain access to exclusive resources, educational events, networking opportunities, and more. We'd' be glad to have ya!

Join TSH here!

The Texas Society of Histotechnology would like to thank our sponsors!

BIOSYSTEMS

REEDENCES

Spooky Cells

- 1. Jakobiec FA, Tu Y, Zakka FR, Tong AKF. Dermatofibroma of the eyelid with monster cells. Surv Ophthalmol. 2017;62(4):533-540. doi:10.1016/j.survophthal.2016.12.007
- 2. Mehendiratta M, Bishen KÅ, Boaz K, Mathias Y. Ghost cells: A journey in the dark.... Dent Res J. 2012;9(Suppl 1):S1-S8.
- 3. Amonkar GP, Kandalkar BM, Balasubramanian M. Cardiac rhabdomyoma. Cardiovasc Pathol. 2009;18(5):313-314. doi:10.1016/j.carpath.2008.02.002

The Anatomy of Fear: A Histologic Look at Fight-or-Flight

- 1. Brain Amygdala Tissue Slides (Adult Normal)- Frozen. Novus Biologicals. Accessed September 18, 2025. https://www.novusbio.com/products/brain-amygdala-slide_nbp2-77518
- 2. Hypothalamus_histology_001.jpg (500×405). Accessed September 18, 2025. https://embryology.med.unsw.edu.au/embryology/images/0/02/Hypothalamus_histology_001.jpg
- 3. Adrenal Medulla Structure Function. TeachMePhysiology. Accessed September 18, 2025. https://teachmephysiology.com/endocrine-system/adrenal-glands/adrenal-medulla/

Plagues Under the Microscope

- 1. Control USC for D. Wayson Stain of Yersinia Pestis. Note the Characteristic "Safety Pin" Appearance of the Bacteria.; 2005. Accessed September 19, 2025. https://commons.wikimedia.org/wiki/File:Yersinia_pestis_wayson.jpg
- 2. Providers C. English: This Transmission Electron Micrograph (TEM) Depicts a Number of Smallpox Virus Virions; Mag Approximately 370,000x. The "Dumbbell-Shaped" Structure inside the Smallpox Virion Is the Viral Core, Which Contains the Viral DNA. This DNA Is the Source of Virus Replication When Internal of a Host Cell.; 1975. Accessed September 19, 2025. https://commons.wikimedia.org/wiki/File:Smallpox_virus_virions_TEM_PHIL_1849.JPG
- 3. Prasad AN, Woolsey C, Borisevich V, et al. Remdesivir, mAbīl4, REGN-EB3, and ZMapp partially rescue nonhuman primates infected with a low passage Kikwit variant of Ebola virus. Nat Commun. 2025;16(1):3824. doi:10.1038/s41467-025-59168-5
- 4. Vine V, Scott DP, Feldmann H. Ebolavirus: An Overview of Molecular and Clinical Pathogenesis. Methods Mol Biol Clifton NJ. 2017;1628:39-50. doi: $10.1007/978-1-4939-7116-9_3$
- 5. Harrod KS. Ebola: history, treatment, and lessons from a new emerging pathogen. Am J Physiol-Lung Cell Mol Physiol. 2015;308(4):L307-L313. doi:10.1152/ajplung.00354.2014

Stain of the Month

1. Bancroft JD. Theory and Practice of Histological Techniques. Elsevier Health Sciences; 2008.

The Dark History of Histology: Toxic Origins of Common Reagents

- 1. Musiał A, Gryglewski RW, Kielczewski S, Loukas M, Wajda J. Formalin use in anatomical and histological science in the 19th and 20th centuries. Folia Med Cracov. 2016;56(3):31-40. PMID: 28275269.
- 2.M Titford (2005) The long history of hematoxylin, Biotechnic & Histochemistry, 80:2, 73-78, DOI: 10.1080/10520290500138372
- 3. Kandyala R, Raghavendra SP, Rajasekharan ST. Xylene: An overview of its health hazards and preventive measures. J Oral Maxillofac Pathol. 2010 Jan;14(1):1-5. doi: 10.4103/0973-029X.64299. PMID: 21180450; PMCID: PMC2996004.